The reaction of the iron thiosulfate-nitrosyl complex with adenosine triphosphoric acid
نویسندگان
چکیده
Iron tetranitrosyl complex bearing the thiosulfate ligand (TNIC) is an efficient nitrogen monoxide donor (NO). He shows antitumor properties and may be used as an original drug for the therapy of acute coronary syndrome. In this work, the reaction of the TNIC with adenosine triphosphoric acid (ATP) was studied. Formation of the products for the reaction of ATP with TNIC was shown by electronic microscopy. The kinetics of the reaction was controlled by spectrofluorometric method, and the complexation constant was measured. The mechanism of interaction of ATP with TNIC was proposed, and the relevant kinetic model satisfactorily described the experimental data, which permitted to calculate the rate constants for these process stages. NMR, IR, and Mössbauer studies were used for determination of the reaction product structure. NMR study showed TNIC interaction only with adenine part of ATP. The method of IR spectroscopy identified both the absence NO in the reaction products and the occurrence of new Fe-S and Fe-N bonds. Mössbauer study showed that iron in the reaction products was presented by two forms: Fe(II) and Fe(III). Thus, the structures for the [ATP-FeS] and [ATP-FeS] complexes were proposed.
منابع مشابه
Fast nitroxyl trapping by ferric porphyrins.
Iron(II) porphyrin nitrosyl complexes are obtained in high yields from the reaction of iron(III) porphyrins with the nitroxyl donors sodium trioxodinitrate and toluensulfohydroxamic acid. The reaction was found to proceed both in organic solvents and in aqueous media from iron(III) (meso-tetraphenyl) porphyrinate ([FeIII(TPP)]+) and iron(III) meso-tetrakis (4-sulfonatophenyl) porphyrinate ([FeI...
متن کاملThe Production of Nitrous Oxide by the Heme/Nonheme Diiron Center of Engineered Myoglobins (FeBMbs) Proceeds through a trans-Iron-Nitrosyl Dimer
Denitrifying NO reductases are transmembrane protein complexes that are evolutionarily related to heme/copper terminal oxidases. They utilize a heme/nonheme diiron center to reduce two NO molecules to N2O. Engineering a nonheme Fe(B) site within the heme distal pocket of sperm whale myoglobin has offered well-defined diiron clusters for the investigation of the mechanism of NO reduction in thes...
متن کاملX-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative.
The cytochrome P450 enzyme CYP119, its compound II derivative, and its nitrosyl complex were studied by iron K-edge x-ray absorption spectroscopy. The compound II derivative was prepared by reaction of the resting enzyme with peroxynitrite and had a lifetime of approximately 10 s at 23 degrees C. The CYP119 nitrosyl complex was prepared by reaction of the enzyme with nitrogen monoxide gas or wi...
متن کاملNitric oxide interaction with lactoferrin and its production by macrophage cells studied by EPR and spin trapping.
The production of nitrate (NO3-) and nitrite (NO2-) from macrophage-derived NO was studied using EPR and spin trapping. The formation of NO3- was determined via EPR in reactions involving the iron-binding protein, lactoferrin. The formation of NO2- was determined via EPR/spin trapping in the reaction between NO2- and H2O2. Dissolved nitric oxide (NO.) was reacted with lactoferrin yielding an EP...
متن کاملThiamine triphosphoric acid; its relation to the thiamine pyrophosphate (cocarboxylase) of Lohmann and Schuster.
By analogy with the designation ATP for adenosine triphosphoric acid, TTP is proposed for the new triphosphoric acid derivative of thiamine. The most significant physiological properties of TTP are concerned with the heart (16, 17, 21), TTP being much more active than thiamine or cocarboxylase. Investigations in the enzymatic field have now been made in order to compare TTP with cocarboxylase a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013